

Spring Valley Lake Fall 2015 Semi-Annual Mapping report

Prepared for Spring Valley Lake Association

AquaTechnex, LLC www.aquatechnex.com

Headquarters Bellingham, WA 98228 360-527-1271 Regional Office Santa Ana, CA 92705 760-272-5842

Introduction

Spring Valley Lake Association is in the fifth year of working under a water clarity improvement program and has requested we perform a number of monitoring tasks to support this work. After baseline data was collected in May 2015, another subsequent data collection was performed in Oct 20, 2015. The objective was to map areas of aquatic plant coverage as well as collect water quality and algae samples on the north and south sections of lake. This report will summarize these findings.

Hydro-Acoustic Mapping

AquaTechnex mobilized a hydro-acoustic mapping vessel to the lake on October to collect data on the potential presence and distribution of aquatic plant growth in the lake. The mapping vessel traveled survey transects across the lake at regular intervals providing near-complete coverage of the water body. The sensing equipment collects a GPS point linked to hydro-acoustic soundings and this data is processed using algorithms to map bathymetry, aquatic plant bio-volume and sediment hardness. The resulting maps are produced below, with this previous result for side by side comparison.

Water Quality Sampling

A water quality and algae bundle was taken on Oct 20, 2015 as part of the survey. A sample was taken from the North and South Sections in the main part of the lake. The results show that the lake has a moderate density of algae. The algae sample also shows a diverse assemblage of mostly good types of algae. The water quality parameters are within acceptable ranges, although with moderately high levels of phosphorous (total and free reactive), there is a chance of an algae bloom occurring in the future or perhaps leading to diminished transparency. Based on the results of the latest water quality testing, Spring Valley Lake is considered eutrophic. For a more detailed description on each water quality parameter, please see the Water Quality Analysis Explanation on the last page.

Vegetation

At the time of this mapping event, aquatic weeds were found concentrated in the NE and SE fingers. In addition, some low density of weeds were found in the Northern shore and on the north end of the beach. Another small cluster was found in the SW finger north of the marina.

Hardness

This map shows the current bottom sediment hardness present in the lake. The legend bar on the right shows the graduated scale.

Generally speaking, the lake retains the same bottom hardness profile and no major changes have been observed.

Contour

Between the two mapping events, we can see the bottom profile has had some minor shifts. These are quite normal and small changes are bound to occur in a lake with moderate activity.

October 2015 Vegetative Map

SeSCRIPT Analysis Report: Spring Valley Lake 1

Company: AquaTechnex, LLC

Address: P.O. Box 30824, Bellingham, WA 98228

Contact Person: Cody Appling; Ben Chen

Phone: 760-272-5842

Email: Cody@aquatechnex.com; Ben@aquatechnex.com Project Name: Spring Valley Lake 1: N

Surface Area: 200 acres

Average depth: 8.5 feet

Date Sample Received: 10/23/15

SeSCRIPT Analysis Performed: Algae analysis

Algae ID Results Spring Valley Lake 1

Identification	Classification	Description	Density (cells/mL)
<i>Pediastrum</i> sp. (some present)	Chlorophyta- Green algae	Colonial, planktonic	480
<i>Scenedesmus</i> sp. (some present)	Chlorophyta- Green algae	Colonial, planktonic	160
<i>Stephanodiscus</i> sp. (little present)	Bacillariophyta- Diatoms	Colonial/single-celled, planktonic	< 40

Other algae in the sample, at lower densities, include: *Ankistrodesmus, Pseudstaurastrum, Tetraedron, Tetraselmis, Cosmarium, Coelastrum* (Chlorophyta); *Euglena* (Euglenophyta); *Aulacoseira, Navicula, Cyclotella, Surirella* (Bacillariophyta); *Cryptomonas* (Cryptophyta); *Pseudanabaena* (Cyanophyta); Dead particulate organic matter observed

SeSCRIPT Analysis Report: Spring Valley Lake 2

Company: AquaTechnex, LLC

Address: P.O. Box 30824, Bellingham, WA 98228

Contact Person: Cody Appling; Ben Chen

Phone: 760-272-5842

Email: Cody@aquatechnex.com; Ben@aquatechnex.com Project Name: Spring Valley Lake 2: S

Surface Area: 200 acres

Average depth: 8.5 feet

Date Sample Received: 10/23/15

SeSCRIPT Analysis Performed: Algae analysis

Algae ID Results Spring Valley Lake 2

Identification	Classification	Description	Density (cells/mL)	
Pediastrum sp.	Chlorophyta- Green algae	Colonial, planktonic	320	
(some present)	Chlorophyta			
(some present)	Green algae	Colonial, planktonic	160	
Tetraedron sp.	Chlorophyta-	Single-celled planktonic	140	
(some present)	Green algae	Single cened, planktome	140	

Other algae in the sample, at lower densities, include: *Staurastrum, Pseudstaurastrum, Monorpahidium, Tetraselmis, Sphaerocystis* (Chlorophyta); *Peridinium* (Dinophyta); *Aulacoseira, Amphipleura, Stephanodiscus* (Bacillariophyta); *Cryptomonas* (Cryptophyta); *Pseudanabaena* (Cyanophyta); Dead particulate organic matter observed

16013 Watson Seed Farm Road, Whitakers, NC 27891

Chair	Chain of Custody: 2015-52032-00		LA	BORATC	DRY	REPORT	Page 1 of 3 Total	
Custor	mer Compa	iny			Customer Co	ntact		
Company Name: Address:		Aquate PO Bo Palm I	echnex LLC-Main x 4193 Desert, CA 92261		Contact Person E-Mail Addres Phone: Fax:	n: C ss: co (7	ody Appling ody@aquatechnex.com /60) 636-8267	
Waterb	ody Inform	nation						
Waterbo	ody:	Spring	g Valley Lake - CA Water	body Size (ac	eres): 200	Depth A	Average: 8.5	
Sample	e Information Sample Location	0 n	Test Method	Results	Sampling Sa Date Ti	ampling	Temp at Receipt (C)	
42593	SOUTH				10/20/2015		19.9	
		Tot E	cal Kjeldahl Nitrogen (mg/L) EPA 351.2	1.319				
		Tot C	al Nitrate & Nitrite (mg/L) Campbell et al 2004	0.0426				
		Nit E	rite (mg/L) EPA 354.1	< 0.02				
		Tot C	al Nitrogen (mg/L) Calculated	1.36				
		Nit C	rate (mg/L) Calculated	0.033				
		Alk E	calinity (mg/L as CaCO3) EPA 310.2	101				
		Chl S	lorophyll a (μg/L) SMEWW 10200 H.	43.3				
		Cor S	nductivity (μS/cm) βΜΕWW 2510	294				
		Dis S	solved Oxygen (mg/L) SMEWW 4500-O	5.68				
		Fre E	e Reactive Phosphorus(μg/L) EPA 365.3	34.4				
		Tot E	al Hardness (mg/L as CaCO3) EPA 130.1) 84.677				
		рН S	(SU) SMEWW 4500-H+	8.3				
		Tot E	cal Phosphorus (μg/L) EPA 365.3	142				
		Tui S	r bidity (NTU) SMEWW 2130	12.06				
		Alg	ae ID and enumeration	Complete				

Original

2015-52032-00 **Chain of Custody:**

Page 2 of 3 Total Pages

waterbody information	W	aterbod	ly Ir	ıforn	natior
-----------------------	---	---------	-------	-------	--------

Waterbo	ody:	Spring Valley Lake - CA Waterb	ody Size (ac	eres): 200	Depth A	Average: 8.5	
Sample	Information Sample	n		Sampling	Sampling	Temp at	
Lab ID	Location	Test Method	Results	Date	Time	Receipt (C)	
	Sample tem	perature at arrival was not within rec	commende	d levels.			
42594	NORTH			10/20/2015		19.9	
		EPA 351.2	1.6				
		Total Nitrate & Nitrite (mg/L) Campbell et al 2004	0.0449				
		Nitrite (mg/L) EPA 354.1	< 0.02				
		Total Nitrogen (mg/L) Calculated	1.70				
		Nitrate (mg/L) Calculated	< 0.02				
		Alkalinity (mg/L as CaCO3) EPA 310.2	107				
		Chlorophyll a (µg/L) SMEWW 10200 H.	45.9				
		Conductivity (μS/cm) SMEWW 2510	275				
		Dissolved Oxygen (mg/L) SMEWW 4500-O	5.3				
		Free Reactive Phosphorus(µg/L) EPA 365.3	43.3				
		Total Hardness (mg/L as CaCO3) EPA 130.1	116.54				
		рН (SU) SMEWW 4500-H+	8.3				
		Total Phosphorus (μg/L) EPA 365.3	150.9				
		Turbidity (NTU) SMEWW 2130	9.88				
		Algae ID and enumeration	Complete				
S	Sample tem	perature at arrival was not within red	commende	d levels.			

Original

Chain of Custody: 2015-52032-00

Waterbody Info	ormation						
Waterbody:	Spring Valley Lake - CA	Waterbody Size (a	cres): 200	Depth A	verage: 8.5		
Sample Inform Sampl Lab ID Locati	ation le ion Test Method	Results	Sampling Date	Sampling Time	Temp at Receipt (C)		
ANALYSIS S SAMPLE RE holding times PRESERVAT in the report. QA/QC CRIT ACCREDITE COMMENTS MEASUREM determination	STATEMENTS: CEIPT /HOLDING TIMES: All s in accordance with the SRTC La FION: Samples requiring preserva ERIA: All analyses met method of D METHODS: This laboratory is S: No significant observations wer IENT UNCERTAINTY: Uncertain of compliance of instruments use	samples arrived in an a boratory Sample Rece ation were verified prior criteria, except as note s not accredited for the re made unless noted in the for analysis; uncerta	acceptable co ipt Policy un or to sample a d in the repo e tests marked n the report. as been acco ainty measure	ondition and less otherwind analysis and rt with data d "‡" unted for with ements are a	were analyzed ise noted in the any qualifiers qualifiers. ith regards to vailable upon r	within prescribed report. will be noted	
Laboratory In Date Received Time Received Date Results Se	formation : 10/23/2015 l: 10:15 ent: 10/30/2015		Date An	alysis Perfo	rmed: 10/30	0/2015	
Disclaimer: The res were performed in otherwise noted in report shall not be is an essential com This entire report to	sults listed within this Laboratory Report accordance with the applicable certifica the report. This Laboratory Report is con reproduced, except in full, without writte ponent of this report. was reviewed and approved for release.	relate only to the samples tions as noted. All soil sam _l ffidential and is intended fo n permission from SRTC L	tested in the lab ples are reporte r the exclusive aboratory. The	oratory. The a d on a dry wei use of SRTC L Chain of Custo	nalyses contained ght basis unless aboratory and its c ody is included and Reviewed By:	in this report client. This d <i>Zee Stan</i> Quality Control Ar	nalyst

CONFIDENTIALITY NOTICE: This electronic transmission (including any files attached hereto) may contain information that is privileged, confidential and protected from disclosure. The information is intended only for the use of the individual or entity named above and is subject to any confidentiality agreements with such party. If the reader of this message is not the intended recipient or any employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any disclosure, dissemination, copying, distribution, or the taking of any action in reliance on the contents of this confidential information is strictly prohibited. If you have received this communication in error, please destroy it immediately and notify the sender by telephone. Thank you

Original

Water Quality Analysis Explanation

These water quality parameters are essential to document the condition of a water body and design custom treatment prescriptions to achieve desired management objectives.

<6 notably acidic 6 - 9 standard for typical freshwaters >9 notably basic														
)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ha typ	Hardness: Measure of the concentration of divalent cations, primarily consisting of calcium and magnesium in typical freshwaters. $0-60 \text{ mg/L} \text{ as } CaCO_3 \text{ soft}; 61-120 \text{ moderately hard}; 121-180 \text{ hard}; > 181 \text{ very hard}$													
All hy∂ ≤ 5	xalinit lroxid 70 mg/2	t y- Measu e in typic L as CaC	are of the al freshv	e buffer vaters. b <i>uffere</i>	ring cap Waters d; 51-1	pacity of s with lo 00 mode	f water, ower lev erately i	primari vels are bufferea	ly consi more su !; 101-26	sting of o sceptible 00 <i>buffer</i>	carbonat to pH si red; > 20	e, bicarbo hifts. <i>00 high bi</i>	onate and uffered	1
Co < 5 typ	nduct 0 uS/c ical fr	ivity- Me em relativ eshwater	easure of ely low o s; > 150	the wa concen 0 may	aters ab tration be stres	ility to t may not ssful to s	ransfer t provid some fre	an elect le suffici eshwate	rical cui cent diss r organi	rrent, inc olved ior sms, tho	reases w is for eco ugh not i	vith more osystem h uncommo	dissolve ealth; 50 on in mar	d ions. 0-1500 ıy areas
Dis < 2 sup	solve mg/L port n	d Oxyger likely tox nost fish d	1- amour <i>xicity wit</i> and inve	nt of di h suffic rtebrat	atomic cient ex es	oxygen posure	dissolv duration	ed in the $n; < 5 s$	e water. tressful	to many	aquatic	organism	$s; \geq 5 \ ab$	ole to
Ph	ospho	rus: Esse	ential nut	rient o	ften co	rrelating	g to grov	wth of a	lgae in f	reshwate	ers.			
Total Phosphorus (TP) is the measure of all phosphorus in a sample as measured by persulfate strong digestion and includes: inorganic, oxidizable organic and polyphosphates. This includes what is readily available, potential to become available and stable forms.														
	Free 2 etc). 7	Reactive This form	Phosph is readil	orus (l ly avail	F RP) is lable in	the means the wat	asure of er colur	inorga nn for a	nic disso Igae gro	olved rea	ctive pho	osphorus	(PO ₄ ⁻³ , 1	HPO ₄ ⁻² ,
Nit	rogen	: Essenti	al nutrie	nt that	can enh	nance gr	owth of	algae.						
	Total for To	N is all r otal Kjeld	hal Nitro	in the s ogen (T	ample (KN) at	(organic nd ionic	N ⁺ and forms.	l Ammo	onia) det	ermined	by the s	um of the	measur	ements
	Nitrit	es and N g/L typic	l itrates a al freshv	tre the <i>vater;</i>	sum of 1-10 po	total ox <i>tentiall</i> y	idized r v <i>harmfi</i>	nitrogen ul; >10	, often r <i>possible</i>	eadily from the second se	ee for alg , <i>above 1</i>	gae uptak nany regi	e. ulated gi	uidelines
	< 1 m		<i>J </i>											
Ch wat <i>0-2</i>	< 1 m lorop ter qua 2.6µg/I	hyll a : p ality in a L oligotro	rimary li system. ophic; 2.2	ght-ha 7-20 μ	rvesting g/L mes	g pigmer sotrophi	nt found c; 21-50	l in alga 6 µg/L e	e and a <i>utrophic</i>	measure $c; > 56 \mu$	of the al	lgal produ ereutroph	activity a	und